RationalPolynomialSmallExponent

RationalPolynomialSmallExponent()

A Symbolica rational polynomial with variable powers limited to 255.

Methods

Name Description
apart Compute the partial fraction decomposition in x.
gcd Compute the greatest common divisor (GCD) of two rational polynomials.
get_var_list Get the list of variables in the internal ordering of the polynomial.
parse Parse a rational polynomial from a string.
to_expression Convert the polynomial to an expression.
to_latex Convert the rational polynomial into a LaTeX string.

apart

RationalPolynomialSmallExponent.apart(x)

Compute the partial fraction decomposition in x.

Examples

>>> from symbolica import Expression
>>> x = Expression.symbol('x')
>>> p = Expression.parse('1/((x+y)*(x^2+x*y+1)(x+1))').to_rational_polynomial()
>>> for pp in p.apart(x):
>>>     print(pp)

gcd

RationalPolynomialSmallExponent.gcd(rhs)

Compute the greatest common divisor (GCD) of two rational polynomials.

get_var_list

RationalPolynomialSmallExponent.get_var_list()

Get the list of variables in the internal ordering of the polynomial.

parse

RationalPolynomialSmallExponent.parse(_cls, input, vars)

Parse a rational polynomial from a string. The list of all the variables must be provided.

If this requirements is too strict, use Expression.to_polynomial() instead.

Examples

>>> e = RationalPolynomialSmallExponent.parse('(3/4*x^2+y+y*4)/(1+x)', ['x', 'y'])

Raises

Type Description
ValueError If the input is not a valid Symbolica rational polynomial.

to_expression

RationalPolynomialSmallExponent.to_expression()

Convert the polynomial to an expression.

Examples

>>> from symbolica import Expression
>>> e = Expression.parse('(x*y+2*x+x^2)/(x^7+y+1)')
>>> p = e.to_polynomial()
>>> print((e - p.to_expression()).expand())

to_latex

RationalPolynomialSmallExponent.to_latex()

Convert the rational polynomial into a LaTeX string.