Transformer
Transformer()
Operations that transform an expression.
Methods
Name | Description |
---|---|
apart | Create a transformer that computes the partial fraction decomposition in x . |
break_chain | Break the current chain and all higher-level chains containing if transformers. |
cancel | Create a transformer that cancels common factors between numerators and denominators. |
chain | Chain several transformers. chain(A,B,C) is the same as A.B.C , |
check_interrupt | Create a transformer that checks for a Python interrupt, |
coefficient | Create a transformer that collects terms involving the literal occurrence of x . |
collect | Create a transformer that collects terms involving the same power of the indeterminate(s) x . |
collect_num | Create a transformer that collects numerical factors by removing the content from additions. |
contains | Create a transformer that checks if the expression contains the given element . |
cycle_symmetrize | Create a transformer that cycle-symmetrizes a function. |
deduplicate | Create a transformer that removes elements from a list if they occur |
derivative | Create a transformer that derives self w.r.t the variable x . |
execute | Execute a bound transformer. If the transformer is unbound, |
expand | Create a transformer that expands products and powers. Optionally, expand in var only. |
expand_num | Create a transformer that distributes numbers in the expression, for example: 2*(x+y) -> 2*x+2*y . |
factor | Create a transformer that factors the expression over the rationals. |
for_each | Create a transformer that applies a transformer chain to every argument of the arg() function. |
from_coeff | Create a transformer that extracts a rational polynomial from a coefficient. |
if_changed | Execute the condition transformer. If the result of the condition transformer is different from the input expression, |
if_then | Evaluate the condition and apply the if_block if the condition is true, otherwise apply the else_block . |
is_type | Test if the transformed expression is of a certain type. |
linearize | Create a transformer that linearizes a function, optionally extracting symbols |
map | Create a transformer that applies a Python function. |
map_terms | Map a chain of transformer over the terms of the expression, optionally using multiple cores. |
matches | Create a transformer that tests whether the pattern is found in the expression. |
nargs | Create a transformer that returns the number of arguments. |
partitions | Create a transformer that partitions a list of arguments into named bins of a given length, |
permutations | Create a transformer that generates all permutations of a list of arguments. |
Create a transformer that prints the expression. | |
prod | Create a transformer that computes the product of a list of arguments. |
repeat | Create a transformer that repeatedly executes the arguments in order |
replace_all | Create a transformer that replaces all subexpressions matching the pattern pat by the right-hand side rhs . |
replace_all_multiple | Create a transformer that replaces all atoms matching the patterns. See replace_all for more information. |
series | Create a transformer that series expands in x around expansion_point to depth depth . |
set_coefficient_ring | Create a transformer that sets the coefficient ring to contain the variables in the vars list. |
sort | Create a transformer that sorts a list of arguments. |
split | Create a transformer that split a sum or product into a list of arguments. |
stats | Print statistics of a transformer, tagging it with tag . |
sum | Create a transformer that computes the sum of a list of arguments. |
together | Create a transformer that writes the expression over a common denominator. |
apart
Transformer.apart(x)
Create a transformer that computes the partial fraction decomposition in x
.
break_chain
Transformer.break_chain()
Break the current chain and all higher-level chains containing if
transformers.
Examples
>>> from symbolica import *
>>> t = T.map_terms(T.repeat(
>>> T.replace_all(y, 4),
>>> T.if_changed(T.replace_all(x, y),
>>> T.break_chain()),
>>> T.print() # print of y is never reached
>>> ))
>>> print(t(x))
cancel
Transformer.cancel()
Create a transformer that cancels common factors between numerators and denominators. Any non-canceling parts of the expression will not be rewritten.
chain
*transformers) Transformer.chain(
Chain several transformers. chain(A,B,C)
is the same as A.B.C
, where A
, B
, C
are transformers.
Examples
>>> from symbolica import Expression
>>> x_ = Expression.symbol('x_')
>>> f = Expression.symbol('f')
>>> e = Expression.parse("f(5)")
>>> e = e.transform().chain(
>>> Transformer().expand(),
>>> Transformer().replace_all(f(x_), f(5))
>>> ).execute()
check_interrupt
Transformer.check_interrupt()
Create a transformer that checks for a Python interrupt, such as ctrl-c and aborts the current transformer.
Examples
>>> from symbolica import *
>>> x_ = Expression.symbol('x_')
>>> f = Expression.symbol('f')
>>> f(10).transform().repeat(Transformer().replace_all(
>>> f(x_), f(x_+1)).check_interrupt()).execute()
coefficient
Transformer.coefficient(x)
Create a transformer that collects terms involving the literal occurrence of x
.
collect
*x, key_map=None, coeff_map=None) Transformer.collect(
Create a transformer that collects terms involving the same power of the indeterminate(s) x
. Return the list of key-coefficient pairs and the remainder that matched no key.
Both the key (the quantity collected in) and its coefficient can be mapped using key_map
and coeff_map
transformers respectively.
Examples
>>> from symbolica import Expression
>>> x, y = Expression.symbol('x', 'y')
>>> e = 5*x + x * y + x**2 + 5
>>>
>>> print(e.transform().collect(x).execute())
yields x^2+x*(y+5)+5
.
>>> from symbolica import Expression
>>> x, y, x_, var, coeff = Expression.symbol('x', 'y', 'x_', 'var', 'coeff')
>>> e = 5*x + x * y + x**2 + 5
>>> print(e.collect(x, key_map=Transformer().replace_all(x_, var(x_)),
=Transformer().replace_all(x_, coeff(x_)))) coeff_map
yields var(1)*coeff(5)+var(x)*coeff(y+5)+var(x^2)*coeff(1)
.
Parameters
Name | Type | Description | Default |
---|---|---|---|
*x | Expression | The variable(s) or function(s) to collect terms in | () |
key_map | Optional[Transformer] | A transformer to be applied to the quantity collected in | None |
coeff_map | Optional[Transformer] | A transformer to be applied to the coefficient | None |
collect_num
Transformer.collect_num()
Create a transformer that collects numerical factors by removing the content from additions. For example, -2*x + 4*x^2 + 6*x^3
will be transformed into -2*(x - 2*x^2 - 3*x^3)
.
The first argument of the addition is normalized to a positive quantity.
Examples
>>> from symbolica import *
>>> x, y = Expression.symbol('x', 'y')
>>> e = (-3*x+6*y)*(2*x+2*y)
>>> print(Transformer().collect_num()(e))
yields
-6*(x+y)*(x-2*y)
contains
Transformer.contains(element)
Create a transformer that checks if the expression contains the given element
.
cycle_symmetrize
Transformer.cycle_symmetrize()
Create a transformer that cycle-symmetrizes a function.
Examples
>>> from symbolica import Expression, Transformer
>>> x_ = Expression.symbol('x__')
>>> f = Expression.symbol('f')
>>> e = f(1,2,4,1,2,3).replace_all(f(x__), x_.transform().cycle_symmetrize())
>>> print(e)
Yields f(1,2,3,1,2,4)
.
deduplicate
Transformer.deduplicate()
Create a transformer that removes elements from a list if they occur earlier in the list as well.
Examples
>>> from symbolica import Expression, Transformer
>>> x__ = Expression.symbol('x__')
>>> f = Expression.symbol('f')
>>> e = f(1,2,1,2).replace_all(f(x__), x__.transform().deduplicate())
>>> print(e)
Yields f(1,2)
.
derivative
Transformer.derivative(x)
Create a transformer that derives self
w.r.t the variable x
.
execute
Transformer.execute()
Execute a bound transformer. If the transformer is unbound, you can call it with an expression as an argument.
Examples
>>> from symbolica import Expression
>>> x = Expression.symbol('x')
>>> e = (x+1)**5
>>> e = e.transform().expand().execute()
>>> print(e)
expand
=None, via_poly=None) Transformer.expand(var
Create a transformer that expands products and powers. Optionally, expand in var
only.
Using via_poly=True
may give a significant speedup for large expressions.
Examples
>>> from symbolica import Expression, Transformer
>>> x, x_ = Expression.symbol('x', 'x_')
>>> f = Expression.symbol('f')
>>> e = f((x+1)**2).replace_all(f(x_), x_.transform().expand())
>>> print(e)
expand_num
Transformer.expand_num()
Create a transformer that distributes numbers in the expression, for example: 2*(x+y)
-> 2*x+2*y
.
Examples
>>> from symbolica import *
>>> x, y = Expression.symbol('x', 'y')
>>> e = 3*(x+y)*(4*x+5*y)
>>> print(Transformer().expand_num()(e))
yields
(3*x+3*y)*(4*x+5*y)
factor
Transformer.factor()
Create a transformer that factors the expression over the rationals.
for_each
*transformers) Transformer.for_each(
Create a transformer that applies a transformer chain to every argument of the arg()
function. If the input is not arg()
, the transformer is applied to the input.
Examples
>>> from symbolica import Expression
>>> x = Expression.symbol('x')
>>> f = Expression.symbol('f')
>>> e = (1+x).transform().split().for_each(Transformer().map(f)).execute()
from_coeff
Transformer.from_coeff()
Create a transformer that extracts a rational polynomial from a coefficient.
Examples
>>> from symbolica import Expression, Function
>>> e = Function.COEFF((x^2+1)/y^2).transform().from_coeff()
>>> print(e)
if_changed
=None) Transformer.if_changed(condition, if_block, else_block
Execute the condition
transformer. If the result of the condition
transformer is different from the input expression, apply the if_block
, otherwise apply the else_block
. The input expression of the if_block
is the output of the condition
transformer.
Examples
>>> t = T.map_terms(T.if_changed(T.replace_all(x, y), T.print()))
>>> print(t(x + y + 4))
prints
y
2*y+4
if_then
=None) Transformer.if_then(condition, if_block, else_block
Evaluate the condition and apply the if_block
if the condition is true, otherwise apply the else_block
. The expression that is the input of the transformer is the input for the condition, the if_block
and the else_block
.
Examples
>>> t = T.map_terms(T.if_then(T.contains(x), T.print()))
>>> t(x + y + 4)
prints x
.
is_type
Transformer.is_type(atom_type)
Test if the transformed expression is of a certain type.
linearize
Transformer.linearize(symbols)
Create a transformer that linearizes a function, optionally extracting symbols
as well.
Examples
>>> from symbolica import Expression, Transformer
>>> x, y, z, w, f, x__ = Expression.symbol('x', 'y', 'z', 'w', 'f', 'x__')
>>> e = f(x+y, 4*z*w+3).replace_all(f(x__), f(x__).transform().linearize([z]))
>>> print(e)
yields f(x,3)+f(y,3)+4*z*f(x,w)+4*z*f(y,w)
.
map
map(f) Transformer.
Create a transformer that applies a Python function.
Examples
>>> from symbolica import Expression, Transformer
>>> x_ = Expression.symbol('x_')
>>> f = Expression.symbol('f')
>>> e = f(2).replace_all(f(x_), x_.transform().map(lambda r: r**2))
>>> print(e)
map_terms
*transformers, n_cores=1) Transformer.map_terms(
Map a chain of transformer over the terms of the expression, optionally using multiple cores.
Examples
>>> from symbolica import *
>>> x, y = S('x', 'y')
>>> t = Transformer().map_terms(Transformer().print(), n_cores=2)
>>> e = t(x + y)
matches
Transformer.matches(
lhs,=None,
cond=None,
level_range=False,
level_is_tree_depth=False,
allow_new_wildcards_on_rhs )
Create a transformer that tests whether the pattern is found in the expression. Restrictions on the pattern can be supplied through cond
.
nargs
=False) Transformer.nargs(only_for_arg_fun
Create a transformer that returns the number of arguments. If the argument is not a function, return 0.
If only_for_arg_fun
is True
, only count the number of arguments in the arg()
function and return 1 if the input is not arg
. This is useful for obtaining the length of a range during pattern matching.
Examples
>>> from symbolica import Expression, Transformer
>>> x__ = Expression.symbol('x__')
>>> f = Expression.symbol('f')
>>> e = f(2,3,4).replace_all(f(x__), x__.transform().nargs())
>>> print(e)
partitions
=False, repeat=False) Transformer.partitions(bins, fill_last
Create a transformer that partitions a list of arguments into named bins of a given length, returning all partitions and their multiplicity.
If the unordered list elements
is larger than the bins, setting the flag fill_last
will add all remaining elements to the last bin.
Setting the flag repeat
means that the bins will be repeated to exactly fit all elements, if possible.
Note that the functions names to be provided for the bin names must be generated through Expression.var
.
Examples
>>> from symbolica import Expression, Transformer
>>> x_, f_id, g_id = Expression.symbol('x__', 'f', 'g')
>>> f = Expression.symbol('f')
>>> e = f(1,2,1,3).replace_all(f(x_), x_.transform().partitions([(f_id, 2), (g_id, 1), (f_id, 1)]))
>>> print(e)
yields:
2*f(1)*f(1,2)*g(3)+2*f(1)*f(1,3)*g(2)+2*f(1)*f(2,3)*g(1)+f(2)*f(1,1)*g(3)+2*f(2)*f(1,3)*g(1)+f(3)*f(1,1)*g(2)+2*f(3)*f(1,2)*g(1)
permutations
Transformer.permutations(function_name)
Create a transformer that generates all permutations of a list of arguments.
Examples
>>> from symbolica import Expression, Transformer
>>> x_, f_id = Expression.symbol('x__', 'f')
>>> f = Expression.symbol('f')
>>> e = f(1,2,1,2).replace_all(f(x_), x_.transform().permutations(f_id)
>>> print(e)
yields:
4*f(1,1,2,2)+4*f(1,2,1,2)+4*f(1,2,2,1)+4*f(2,1,1,2)+4*f(2,1,2,1)+4*f(2,2,1,1)
print(
Transformer.=False,
terms_on_new_line=True,
color_top_level_sum=True,
color_builtin_symbols=True,
print_finite_field=False,
symmetric_representation_for_finite_field=False,
explicit_rational_polynomial=None,
number_thousands_separator='*',
multiplication_operator=False,
double_star_for_exponentiation=False,
square_brackets_for_function=True,
num_exp_as_superscript=False,
latex )
Create a transformer that prints the expression.
Examples
>>> Expression.parse('f(10)').transform().print(terms_on_new_line = True).execute()
prod
Transformer.prod()
Create a transformer that computes the product of a list of arguments.
Examples
>>> from symbolica import Expression, Transformer
>>> x__ = Expression.symbol('x__')
>>> f = Expression.symbol('f')
>>> e = f(2,3).replace_all(f(x__), x__.transform().prod())
>>> print(e)
repeat
*transformers) Transformer.repeat(
Create a transformer that repeatedly executes the arguments in order until there are no more changes. The output from one transformer is inserted into the next.
Examples
>>> from symbolica import Expression
>>> x_ = Expression.symbol('x_')
>>> f = Expression.symbol('f')
>>> e = Expression.parse("f(5)")
>>> e = e.transform().repeat(
>>> Transformer().expand(),
>>> Transformer().replace_all(f(x_), f(x_ - 1) + f(x_ - 2), x_.req_gt(1))
>>> ).execute()
replace_all
Transformer.replace_all(
pat,
rhs,=None,
cond=None,
non_greedy_wildcards=None,
level_range=False,
level_is_tree_depth=False,
allow_new_wildcards_on_rhs )
Create a transformer that replaces all subexpressions matching the pattern pat
by the right-hand side rhs
.
Examples
>>> x, w1_, w2_ = Expression.symbol('x','w1_','w2_')
>>> f = Expression.symbol('f')
>>> e = f(3,x)
>>> r = e.transform().replace_all(f(w1_,w2_), f(w1_ - 1, w2_**2), w1_ >= 1)
>>> print(r)
Parameters
Name | Type | Description | Default |
---|---|---|---|
pat | Transformer | Expression | int | float | Decimal | The pattern to match. | required |
rhs | Transformer | Expression | Callable[[dict[Expression, Expression]], Expression] | int | float | Decimal | The right-hand side to replace the matched subexpression with. Can be a transformer, expression or a function that maps a dictionary of wildcards to an expression. | required |
cond | Optional[PatternRestriction | Condition] | Conditions on the pattern. | None |
non_greedy_wildcards | Optional[Sequence[Expression]] | Wildcards that try to match as little as possible. | None |
level_range | Optional[Tuple[int, Optional[int]]] | Specifies the [min,max] level at which the pattern is allowed to match. The first level is 0 and the level is increased when going into a function or one level deeper in the expression tree, depending on level_is_tree_depth . |
None |
level_is_tree_depth | Optional[bool] | If set to True , the level is increased when going one level deeper in the expression tree. |
False |
allow_new_wildcards_on_rhs | Optional[bool] | If set to True , allow wildcards that do not appear in the pattern on the right-hand side. |
False |
rhs_cache_size | Cache the first rhs_cache_size substituted patterns. If set to None , an internally determined cache size is used. Warning: caching should be disabled (rhs_cache_size=0 ) if the right-hand side contains side effects, such as updating a global variable. |
required | |
repeat | If set to True , the entire operation will be repeated until there are no more matches. |
required |
replace_all_multiple
Transformer.replace_all_multiple(replacements)
Create a transformer that replaces all atoms matching the patterns. See replace_all
for more information.
Examples
>>> x, y, f = Expression.symbol('x', 'y', 'f')
>>> e = f(x,y)
>>> r = e.transform().replace_all_multiple([Replacement(x, y), Replacement(y, x)])
>>> print(r)
series
Transformer.series(
x,
expansion_point,
depth,=1,
depth_denom=True,
depth_is_absolute )
Create a transformer that series expands in x
around expansion_point
to depth depth
.
Examples
>>> from symbolica import Expression
>>> x, y = Expression.symbol('x', 'y')
>>> f = Expression.symbol('f')
>>>
>>> e = 2* x**2 * y + f(x)
>>> e = e.series(x, 0, 2)
>>>
>>> print(e)
yields f(0)+x*der(1,f(0))+1/2*x^2*(der(2,f(0))+4*y)
.
set_coefficient_ring
vars) Transformer.set_coefficient_ring(
Create a transformer that sets the coefficient ring to contain the variables in the vars
list. This will move all variables into a rational polynomial function.
Parameters
Name | Type | Description | Default |
---|---|---|---|
vars | Sequence[Expression] | A list of variables | required |
sort
Transformer.sort()
Create a transformer that sorts a list of arguments.
Examples
>>> from symbolica import Expression, Transformer
>>> x__ = Expression.symbol('x__')
>>> f = Expression.symbol('f')
>>> e = f(3,2,1).replace_all(f(x__), x__.transform().sort())
>>> print(e)
split
Transformer.split()
Create a transformer that split a sum or product into a list of arguments.
Examples
>>> from symbolica import Expression, Transformer
>>> x, x__ = Expression.symbol('x', 'x__')
>>> f = Expression.symbol('f')
>>> e = (x + 1).replace_all(x__, f(x_.transform().split()))
>>> print(e)
stats
Transformer.stats(
tag,
transformer,=10.0,
color_medium_change_threshold=100.0,
color_large_change_threshold )
Print statistics of a transformer, tagging it with tag
.
Examples
>>> from symbolica import Expression
>>> x_ = Expression.symbol('x_')
>>> f = Expression.symbol('f')
>>> e = Expression.parse("f(5)")
>>> e = e.transform().stats('replace', Transformer().replace_all(f(x_), 1)).execute()
yields
Stats for replace:
In │ 1 │ 10.00 B │
Out │ 1 │ 3.00 B │ ⧗ 40.15µs
sum
sum() Transformer.
Create a transformer that computes the sum of a list of arguments.
Examples
>>> from symbolica import Expression, Transformer
>>> x__ = Expression.symbol('x__')
>>> f = Expression.symbol('f')
>>> e = f(2,3).replace_all(f(x__), x__.transform().sum())
>>> print(e)
together
Transformer.together()
Create a transformer that writes the expression over a common denominator.