Transformer

Transformer()

Operations that transform an expression.

Methods

Name Description
apart Create a transformer that computes the partial fraction decomposition in x.
break_chain Break the current chain and all higher-level chains containing if transformers.
cancel Create a transformer that cancels common factors between numerators and denominators.
chain Chain several transformers. chain(A,B,C) is the same as A.B.C,
check_interrupt Create a transformer that checks for a Python interrupt,
coefficient Create a transformer that collects terms involving the literal occurrence of x.
collect Create a transformer that collects terms involving the same power of the indeterminate(s) x.
collect_num Create a transformer that collects numerical factors by removing the content from additions.
contains Create a transformer that checks if the expression contains the given element.
cycle_symmetrize Create a transformer that cycle-symmetrizes a function.
deduplicate Create a transformer that removes elements from a list if they occur
derivative Create a transformer that derives self w.r.t the variable x.
execute Execute a bound transformer. If the transformer is unbound,
expand Create a transformer that expands products and powers. Optionally, expand in var only.
expand_num Create a transformer that distributes numbers in the expression, for example: 2*(x+y) -> 2*x+2*y.
factor Create a transformer that factors the expression over the rationals.
for_each Create a transformer that applies a transformer chain to every argument of the arg() function.
from_coeff Create a transformer that extracts a rational polynomial from a coefficient.
if_changed Execute the condition transformer. If the result of the condition transformer is different from the input expression,
if_then Evaluate the condition and apply the if_block if the condition is true, otherwise apply the else_block.
is_type Test if the transformed expression is of a certain type.
linearize Create a transformer that linearizes a function, optionally extracting symbols
map Create a transformer that applies a Python function.
map_terms Map a chain of transformer over the terms of the expression, optionally using multiple cores.
matches Create a transformer that tests whether the pattern is found in the expression.
nargs Create a transformer that returns the number of arguments.
partitions Create a transformer that partitions a list of arguments into named bins of a given length,
permutations Create a transformer that generates all permutations of a list of arguments.
print Create a transformer that prints the expression.
prod Create a transformer that computes the product of a list of arguments.
repeat Create a transformer that repeatedly executes the arguments in order
replace_all Create a transformer that replaces all subexpressions matching the pattern pat by the right-hand side rhs.
replace_all_multiple Create a transformer that replaces all atoms matching the patterns. See replace_all for more information.
series Create a transformer that series expands in x around expansion_point to depth depth.
set_coefficient_ring Create a transformer that sets the coefficient ring to contain the variables in the vars list.
sort Create a transformer that sorts a list of arguments.
split Create a transformer that split a sum or product into a list of arguments.
stats Print statistics of a transformer, tagging it with tag.
sum Create a transformer that computes the sum of a list of arguments.
together Create a transformer that writes the expression over a common denominator.

apart

Transformer.apart(x)

Create a transformer that computes the partial fraction decomposition in x.

break_chain

Transformer.break_chain()

Break the current chain and all higher-level chains containing if transformers.

Examples

>>> from symbolica import *
>>> t = T.map_terms(T.repeat(
>>>     T.replace_all(y, 4),
>>>     T.if_changed(T.replace_all(x, y),
>>>                 T.break_chain()),
>>>     T.print()  # print of y is never reached
>>> ))
>>> print(t(x))

cancel

Transformer.cancel()

Create a transformer that cancels common factors between numerators and denominators. Any non-canceling parts of the expression will not be rewritten.

chain

Transformer.chain(*transformers)

Chain several transformers. chain(A,B,C) is the same as A.B.C, where A, B, C are transformers.

Examples

>>> from symbolica import Expression
>>> x_ = Expression.symbol('x_')
>>> f = Expression.symbol('f')
>>> e = Expression.parse("f(5)")
>>> e = e.transform().chain(
>>>     Transformer().expand(),
>>>     Transformer().replace_all(f(x_), f(5))
>>> ).execute()

check_interrupt

Transformer.check_interrupt()

Create a transformer that checks for a Python interrupt, such as ctrl-c and aborts the current transformer.

Examples

>>> from symbolica import *
>>> x_ = Expression.symbol('x_')
>>> f = Expression.symbol('f')
>>> f(10).transform().repeat(Transformer().replace_all(
>>> f(x_), f(x_+1)).check_interrupt()).execute()

coefficient

Transformer.coefficient(x)

Create a transformer that collects terms involving the literal occurrence of x.

collect

Transformer.collect(*x, key_map=None, coeff_map=None)

Create a transformer that collects terms involving the same power of the indeterminate(s) x. Return the list of key-coefficient pairs and the remainder that matched no key.

Both the key (the quantity collected in) and its coefficient can be mapped using key_map and coeff_map transformers respectively.

Examples

>>> from symbolica import Expression
>>> x, y = Expression.symbol('x', 'y')
>>> e = 5*x + x * y + x**2 + 5
>>>
>>> print(e.transform().collect(x).execute())

yields x^2+x*(y+5)+5.

>>> from symbolica import Expression
>>> x, y, x_, var, coeff = Expression.symbol('x', 'y', 'x_', 'var', 'coeff')
>>> e = 5*x + x * y + x**2 + 5
>>> print(e.collect(x, key_map=Transformer().replace_all(x_, var(x_)),
        coeff_map=Transformer().replace_all(x_, coeff(x_))))

yields var(1)*coeff(5)+var(x)*coeff(y+5)+var(x^2)*coeff(1).

Parameters

Name Type Description Default
*x Expression The variable(s) or function(s) to collect terms in ()
key_map Optional[Transformer] A transformer to be applied to the quantity collected in None
coeff_map Optional[Transformer] A transformer to be applied to the coefficient None

collect_num

Transformer.collect_num()

Create a transformer that collects numerical factors by removing the content from additions. For example, -2*x + 4*x^2 + 6*x^3 will be transformed into -2*(x - 2*x^2 - 3*x^3).

The first argument of the addition is normalized to a positive quantity.

Examples

>>> from symbolica import *
>>> x, y = Expression.symbol('x', 'y')
>>> e = (-3*x+6*y)*(2*x+2*y)
>>> print(Transformer().collect_num()(e))

yields

-6*(x+y)*(x-2*y)

contains

Transformer.contains(element)

Create a transformer that checks if the expression contains the given element.

cycle_symmetrize

Transformer.cycle_symmetrize()

Create a transformer that cycle-symmetrizes a function.

Examples

>>> from symbolica import Expression, Transformer
>>> x_ = Expression.symbol('x__')
>>> f = Expression.symbol('f')
>>> e = f(1,2,4,1,2,3).replace_all(f(x__), x_.transform().cycle_symmetrize())
>>> print(e)

Yields f(1,2,3,1,2,4).

deduplicate

Transformer.deduplicate()

Create a transformer that removes elements from a list if they occur earlier in the list as well.

Examples

>>> from symbolica import Expression, Transformer
>>> x__ = Expression.symbol('x__')
>>> f = Expression.symbol('f')
>>> e = f(1,2,1,2).replace_all(f(x__), x__.transform().deduplicate())
>>> print(e)

Yields f(1,2).

derivative

Transformer.derivative(x)

Create a transformer that derives self w.r.t the variable x.

execute

Transformer.execute()

Execute a bound transformer. If the transformer is unbound, you can call it with an expression as an argument.

Examples

>>> from symbolica import Expression
>>> x = Expression.symbol('x')
>>> e = (x+1)**5
>>> e = e.transform().expand().execute()
>>> print(e)

expand

Transformer.expand(var=None, via_poly=None)

Create a transformer that expands products and powers. Optionally, expand in var only.

Using via_poly=True may give a significant speedup for large expressions.

Examples

>>> from symbolica import Expression, Transformer
>>> x, x_ = Expression.symbol('x', 'x_')
>>> f = Expression.symbol('f')
>>> e = f((x+1)**2).replace_all(f(x_), x_.transform().expand())
>>> print(e)

expand_num

Transformer.expand_num()

Create a transformer that distributes numbers in the expression, for example: 2*(x+y) -> 2*x+2*y.

Examples

>>> from symbolica import *
>>> x, y = Expression.symbol('x', 'y')
>>> e = 3*(x+y)*(4*x+5*y)
>>> print(Transformer().expand_num()(e))

yields

(3*x+3*y)*(4*x+5*y)

factor

Transformer.factor()

Create a transformer that factors the expression over the rationals.

for_each

Transformer.for_each(*transformers)

Create a transformer that applies a transformer chain to every argument of the arg() function. If the input is not arg(), the transformer is applied to the input.

Examples

>>> from symbolica import Expression
>>> x = Expression.symbol('x')
>>> f = Expression.symbol('f')
>>> e = (1+x).transform().split().for_each(Transformer().map(f)).execute()

from_coeff

Transformer.from_coeff()

Create a transformer that extracts a rational polynomial from a coefficient.

Examples

>>> from symbolica import Expression, Function
>>> e = Function.COEFF((x^2+1)/y^2).transform().from_coeff()
>>> print(e)

if_changed

Transformer.if_changed(condition, if_block, else_block=None)

Execute the condition transformer. If the result of the condition transformer is different from the input expression, apply the if_block, otherwise apply the else_block. The input expression of the if_block is the output of the condition transformer.

Examples

>>> t = T.map_terms(T.if_changed(T.replace_all(x, y), T.print()))
>>> print(t(x + y + 4))

prints

y
2*y+4

if_then

Transformer.if_then(condition, if_block, else_block=None)

Evaluate the condition and apply the if_block if the condition is true, otherwise apply the else_block. The expression that is the input of the transformer is the input for the condition, the if_block and the else_block.

Examples

>>> t = T.map_terms(T.if_then(T.contains(x), T.print()))
>>> t(x + y + 4)

prints x.

is_type

Transformer.is_type(atom_type)

Test if the transformed expression is of a certain type.

linearize

Transformer.linearize(symbols)

Create a transformer that linearizes a function, optionally extracting symbols as well.

Examples

>>> from symbolica import Expression, Transformer
>>> x, y, z, w, f, x__ = Expression.symbol('x', 'y', 'z', 'w', 'f', 'x__')
>>> e = f(x+y, 4*z*w+3).replace_all(f(x__), f(x__).transform().linearize([z]))
>>> print(e)

yields f(x,3)+f(y,3)+4*z*f(x,w)+4*z*f(y,w).

map

Transformer.map(f)

Create a transformer that applies a Python function.

Examples

>>> from symbolica import Expression, Transformer
>>> x_ = Expression.symbol('x_')
>>> f = Expression.symbol('f')
>>> e = f(2).replace_all(f(x_), x_.transform().map(lambda r: r**2))
>>> print(e)

map_terms

Transformer.map_terms(*transformers, n_cores=1)

Map a chain of transformer over the terms of the expression, optionally using multiple cores.

Examples

>>> from symbolica import *
>>> x, y = S('x', 'y')
>>> t = Transformer().map_terms(Transformer().print(), n_cores=2)
>>> e = t(x + y)

matches

Transformer.matches(
    lhs,
    cond=None,
    level_range=None,
    level_is_tree_depth=False,
    allow_new_wildcards_on_rhs=False,
)

Create a transformer that tests whether the pattern is found in the expression. Restrictions on the pattern can be supplied through cond.

nargs

Transformer.nargs(only_for_arg_fun=False)

Create a transformer that returns the number of arguments. If the argument is not a function, return 0.

If only_for_arg_fun is True, only count the number of arguments in the arg() function and return 1 if the input is not arg. This is useful for obtaining the length of a range during pattern matching.

Examples

>>> from symbolica import Expression, Transformer
>>> x__ = Expression.symbol('x__')
>>> f = Expression.symbol('f')
>>> e = f(2,3,4).replace_all(f(x__), x__.transform().nargs())
>>> print(e)

partitions

Transformer.partitions(bins, fill_last=False, repeat=False)

Create a transformer that partitions a list of arguments into named bins of a given length, returning all partitions and their multiplicity.

If the unordered list elements is larger than the bins, setting the flag fill_last will add all remaining elements to the last bin.

Setting the flag repeat means that the bins will be repeated to exactly fit all elements, if possible.

Note that the functions names to be provided for the bin names must be generated through Expression.var.

Examples

>>> from symbolica import Expression, Transformer
>>> x_, f_id, g_id = Expression.symbol('x__', 'f', 'g')
>>> f = Expression.symbol('f')
>>> e = f(1,2,1,3).replace_all(f(x_), x_.transform().partitions([(f_id, 2), (g_id, 1), (f_id, 1)]))
>>> print(e)

yields:

2*f(1)*f(1,2)*g(3)+2*f(1)*f(1,3)*g(2)+2*f(1)*f(2,3)*g(1)+f(2)*f(1,1)*g(3)+2*f(2)*f(1,3)*g(1)+f(3)*f(1,1)*g(2)+2*f(3)*f(1,2)*g(1)

permutations

Transformer.permutations(function_name)

Create a transformer that generates all permutations of a list of arguments.

Examples

>>> from symbolica import Expression, Transformer
>>> x_, f_id = Expression.symbol('x__', 'f')
>>> f = Expression.symbol('f')
>>> e = f(1,2,1,2).replace_all(f(x_), x_.transform().permutations(f_id)
>>> print(e)

yields:

4*f(1,1,2,2)+4*f(1,2,1,2)+4*f(1,2,2,1)+4*f(2,1,1,2)+4*f(2,1,2,1)+4*f(2,2,1,1)

print

Transformer.print(
    terms_on_new_line=False,
    color_top_level_sum=True,
    color_builtin_symbols=True,
    print_finite_field=True,
    symmetric_representation_for_finite_field=False,
    explicit_rational_polynomial=False,
    number_thousands_separator=None,
    multiplication_operator='*',
    double_star_for_exponentiation=False,
    square_brackets_for_function=False,
    num_exp_as_superscript=True,
    latex=False,
)

Create a transformer that prints the expression.

Examples

>>> Expression.parse('f(10)').transform().print(terms_on_new_line = True).execute()

prod

Transformer.prod()

Create a transformer that computes the product of a list of arguments.

Examples

>>> from symbolica import Expression, Transformer
>>> x__ = Expression.symbol('x__')
>>> f = Expression.symbol('f')
>>> e = f(2,3).replace_all(f(x__), x__.transform().prod())
>>> print(e)

repeat

Transformer.repeat(*transformers)

Create a transformer that repeatedly executes the arguments in order until there are no more changes. The output from one transformer is inserted into the next.

Examples

>>> from symbolica import Expression
>>> x_ = Expression.symbol('x_')
>>> f = Expression.symbol('f')
>>> e = Expression.parse("f(5)")
>>> e = e.transform().repeat(
>>>     Transformer().expand(),
>>>     Transformer().replace_all(f(x_), f(x_ - 1) + f(x_ - 2), x_.req_gt(1))
>>> ).execute()

replace_all

Transformer.replace_all(
    pat,
    rhs,
    cond=None,
    non_greedy_wildcards=None,
    level_range=None,
    level_is_tree_depth=False,
    allow_new_wildcards_on_rhs=False,
)

Create a transformer that replaces all subexpressions matching the pattern pat by the right-hand side rhs.

Examples

>>> x, w1_, w2_ = Expression.symbol('x','w1_','w2_')
>>> f = Expression.symbol('f')
>>> e = f(3,x)
>>> r = e.transform().replace_all(f(w1_,w2_), f(w1_ - 1, w2_**2), w1_ >= 1)
>>> print(r)

Parameters

Name Type Description Default
pat Transformer | Expression | int | float | Decimal The pattern to match. required
rhs Transformer | Expression | Callable[[dict[Expression, Expression]], Expression] | int | float | Decimal The right-hand side to replace the matched subexpression with. Can be a transformer, expression or a function that maps a dictionary of wildcards to an expression. required
cond Optional[PatternRestriction | Condition] Conditions on the pattern. None
non_greedy_wildcards Optional[Sequence[Expression]] Wildcards that try to match as little as possible. None
level_range Optional[Tuple[int, Optional[int]]] Specifies the [min,max] level at which the pattern is allowed to match. The first level is 0 and the level is increased when going into a function or one level deeper in the expression tree, depending on level_is_tree_depth. None
level_is_tree_depth Optional[bool] If set to True, the level is increased when going one level deeper in the expression tree. False
allow_new_wildcards_on_rhs Optional[bool] If set to True, allow wildcards that do not appear in the pattern on the right-hand side. False
rhs_cache_size Cache the first rhs_cache_size substituted patterns. If set to None, an internally determined cache size is used. Warning: caching should be disabled (rhs_cache_size=0) if the right-hand side contains side effects, such as updating a global variable. required
repeat If set to True, the entire operation will be repeated until there are no more matches. required

replace_all_multiple

Transformer.replace_all_multiple(replacements)

Create a transformer that replaces all atoms matching the patterns. See replace_all for more information.

Examples

>>> x, y, f = Expression.symbol('x', 'y', 'f')
>>> e = f(x,y)
>>> r = e.transform().replace_all_multiple([Replacement(x, y), Replacement(y, x)])
>>> print(r)

series

Transformer.series(
    x,
    expansion_point,
    depth,
    depth_denom=1,
    depth_is_absolute=True,
)

Create a transformer that series expands in x around expansion_point to depth depth.

Examples

>>> from symbolica import Expression
>>> x, y = Expression.symbol('x', 'y')
>>> f = Expression.symbol('f')
>>>
>>> e = 2* x**2 * y + f(x)
>>> e = e.series(x, 0, 2)
>>>
>>> print(e)

yields f(0)+x*der(1,f(0))+1/2*x^2*(der(2,f(0))+4*y).

set_coefficient_ring

Transformer.set_coefficient_ring(vars)

Create a transformer that sets the coefficient ring to contain the variables in the vars list. This will move all variables into a rational polynomial function.

Parameters

Name Type Description Default
vars Sequence[Expression] A list of variables required

sort

Transformer.sort()

Create a transformer that sorts a list of arguments.

Examples

>>> from symbolica import Expression, Transformer
>>> x__ = Expression.symbol('x__')
>>> f = Expression.symbol('f')
>>> e = f(3,2,1).replace_all(f(x__), x__.transform().sort())
>>> print(e)

split

Transformer.split()

Create a transformer that split a sum or product into a list of arguments.

Examples

>>> from symbolica import Expression, Transformer
>>> x, x__ = Expression.symbol('x', 'x__')
>>> f = Expression.symbol('f')
>>> e = (x + 1).replace_all(x__, f(x_.transform().split()))
>>> print(e)

stats

Transformer.stats(
    tag,
    transformer,
    color_medium_change_threshold=10.0,
    color_large_change_threshold=100.0,
)

Print statistics of a transformer, tagging it with tag.

Examples

>>> from symbolica import Expression
>>> x_ = Expression.symbol('x_')
>>> f = Expression.symbol('f')
>>> e = Expression.parse("f(5)")
>>> e = e.transform().stats('replace', Transformer().replace_all(f(x_), 1)).execute()

yields

Stats for replace:
    In  │ 1 │  10.00 B │
    Out │ 1 │   3.00 B │ ⧗ 40.15µs

sum

Transformer.sum()

Create a transformer that computes the sum of a list of arguments.

Examples

>>> from symbolica import Expression, Transformer
>>> x__ = Expression.symbol('x__')
>>> f = Expression.symbol('f')
>>> e = f(2,3).replace_all(f(x__), x__.transform().sum())
>>> print(e)

together

Transformer.together()

Create a transformer that writes the expression over a common denominator.