FiniteFieldRationalPolynomial

FiniteFieldRationalPolynomial()

A Symbolica rational polynomial.

Methods

Name Description
apart Compute the partial fraction decomposition in x.
derivative Take a derivative in x.
gcd Compute the greatest common divisor (GCD) of two rational polynomials.
get_var_list Get the list of variables in the internal ordering of the polynomial.
parse Parse a rational polynomial from a string.
to_latex Convert the rational polynomial into a LaTeX string.

apart

FiniteFieldRationalPolynomial.apart(x)

Compute the partial fraction decomposition in x.

Examples

>>> from symbolica import Expression
>>> x = Expression.symbol('x')
>>> p = Expression.parse('1/((x+y)*(x^2+x*y+1)(x+1))').to_rational_polynomial()
>>> for pp in p.apart(x):
>>>     print(pp)

derivative

FiniteFieldRationalPolynomial.derivative(x)

Take a derivative in x.

Examples

>>> from symbolica import Expression
>>> x = Expression.symbol('x')
>>> p = Expression.parse('1/((x+y)*(x^2+x*y+1)(x+1))').to_rational_polynomial()
>>> print(p.derivative(x))

gcd

FiniteFieldRationalPolynomial.gcd(rhs)

Compute the greatest common divisor (GCD) of two rational polynomials.

get_var_list

FiniteFieldRationalPolynomial.get_var_list()

Get the list of variables in the internal ordering of the polynomial.

parse

FiniteFieldRationalPolynomial.parse(_cls, input, vars, prime)

Parse a rational polynomial from a string. The list of all the variables must be provided.

If this requirements is too strict, use Expression.to_polynomial() instead.

Examples

>>> e = FiniteFieldRationalPolynomial.parse('3*x^2+y+y*4', ['x', 'y'], 17)

Raises

Type Description
ValueError If the input is not a valid Symbolica rational polynomial.

to_latex

FiniteFieldRationalPolynomial.to_latex()

Convert the rational polynomial into a LaTeX string.