PatternRestriction
NumericalIntegrator()
A numerical integrator for high-dimensional integrals.
Methods
Name | Description |
---|---|
add_training_samples | Add the samples and their corresponding function evaluations to the grid. |
continuous | Create a new continuous grid for the numerical integrator. |
discrete | Create a new discrete grid for the numerical integrator. Each |
export_grid | Export the grid, so that it can be sent to another thread or machine. |
get_live_estimate | Get the estamate of the average, error, chi-squared, maximum negative and positive evaluations, and the number of processed samples |
import_grid | Import an exported grid from another thread or machine. |
integrate | Integrate the function integrand that maps a list of Sample s to a list of float s. |
merge | Add the accumulated training samples from the grid other to the current grid. |
rng | Create a new random number generator, suitable for use with the integrator. |
sample | Sample num_samples points from the grid using the random number generator |
update | Update the grid using the discrete_learning_rate and continuous_learning_rate . |
add_training_samples
NumericalIntegrator.add_training_samples(samples, evals)
Add the samples and their corresponding function evaluations to the grid. Call update
after to update the grid and to obtain the new expected value for the integral.
continuous
NumericalIntegrator.continuous(
_cls,
n_dims,=128,
n_bins=100,
min_samples_for_update=None,
bin_number_evolution=False,
train_on_avg )
Create a new continuous grid for the numerical integrator.
discrete
NumericalIntegrator.discrete(
_cls,
bins,=100.0,
max_prob_ratio=False,
train_on_avg )
Create a new discrete grid for the numerical integrator. Each bin can have a sub-grid.
Examples
>>> def integrand(samples: list[Sample]):
>>> res = []
>>> for sample in samples:
>>> if sample.d[0] == 0:
>>> res.append(sample.c[0]**2)
>>> else:
>>> res.append(sample.c[0]**1/2)
>>> return res
>>>
>>> integrator = NumericalIntegrator.discrete(
>>> [NumericalIntegrator.continuous(1), NumericalIntegrator.continuous(1)])
>>> integrator.integrate(integrand, True, 10, 10000)
export_grid
NumericalIntegrator.export_grid()
Export the grid, so that it can be sent to another thread or machine. Use import_grid
to load the grid.
get_live_estimate
NumericalIntegrator.get_live_estimate()
Get the estamate of the average, error, chi-squared, maximum negative and positive evaluations, and the number of processed samples for the current iteration, including the points submitted in the current iteration.
import_grid
NumericalIntegrator.import_grid(_cls, grid)
Import an exported grid from another thread or machine. Use export_grid
to export the grid.
integrate
NumericalIntegrator.integrate(
integrand,=10000000,
max_n_iter=0.01,
min_error=10000,
n_samples_per_iter=0,
seed=True,
show_stats )
Integrate the function integrand
that maps a list of Sample
s to a list of float
s. The return value is the average, the statistical error, and chi-squared of the integral.
With show_stats=True
, intermediate statistics will be printed. max_n_iter
determines the number of iterations and n_samples_per_iter
determine the number of samples per iteration. This is the same amount of samples that the integrand function will be called with.
For more flexibility, use sample
, add_training_samples
and update
. See update
for an example.
Examples
>>> from symbolica import NumericalIntegrator, Sample
>>>
>>> def integrand(samples: list[Sample]):
>>> res = []
>>> for sample in samples:
>>> res.append(sample.c[0]**2+sample.c[1]**2)
>>> return res
>>>
>>> avg, err = NumericalIntegrator.continuous(2).integrate(integrand, True, 10, 100000)
>>> print('Result: {} +- {}'.format(avg, err))
merge
NumericalIntegrator.merge(other)
Add the accumulated training samples from the grid other
to the current grid. The grid structure of self
and other
must be equivalent.
rng
NumericalIntegrator.rng(_cls, seed, stream_id)
Create a new random number generator, suitable for use with the integrator. Each thread of instance of the integrator should have its own random number generator, that is initialized with the same seed but with a different stream id.
sample
NumericalIntegrator.sample(num_samples, rng)
Sample num_samples
points from the grid using the random number generator rng
. See rng()
for how to create a random number generator.
update
NumericalIntegrator.update(discrete_learning_rate, continous_learning_rate)
Update the grid using the discrete_learning_rate
and continuous_learning_rate
.
Examples
>>> from symbolica import NumericalIntegrator, Sample
>>>
>>> def integrand(samples: list[Sample]):
>>> res = []
>>> for sample in samples:
>>> res.append(sample.c[0]**2+sample.c[1]**2)
>>> return res
>>>
>>> integrator = NumericalIntegrator.continuous(2)
>>> for i in range(10):
>>> samples = integrator.sample(10000 + i * 1000)
>>> res = integrand(samples)
>>> integrator.add_training_samples(samples, res)
>>> avg, err, chi_sq = integrator.update(1.5, 1.5)
>>> print('Iteration {}: {:.6} +- {:.6}, chi={:.6}'.format(i+1, avg, err, chi_sq))